17 2100, 2102, 2104, 2106, 2108, 2120-2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384-2460, 2461, 2466, 2471, 2476 and 2481 of the invention. By way of example, fungal orthologs may comprise a nucleotide sequence as represented in any of SEQ ID NOs:136-158, 447-472, 565-575, 752-767, 855-862, 1026-1040, 1474-1571, 2002-2039, 2299-2338, 2441-2460, or a fragment of at least 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 or 27 nucleotides thereof. According to another aspect, the invention thus encompasses any of the methods described herein for controlling fungal growth on a cell or an organism, or for preventing fungal infestation of a cell or an organism susceptible to fungal infection, comprising contacting fungal cells with a double-stranded RNA, wherein the double-stranded RNA comprises annealed complementary strands, one of which has a nucleotide sequence which is complementary to at least part of the nucleotide sequence of a target gene comprising a fragment of at least 17, 18, 19, 20 or 21 nucleotides of any of the sequences as represented in SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49-158, 159, 160, 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275-472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533-575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621-767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813-862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908-1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161-1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730-2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120-2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384-2460, 2461, 2466, 2471, 2476 and 2481, whereby the double-stranded RNA is taken up by the fungus and thereby controls growth or prevents infestation. The invention also relates to fungal-resistant transgenic plants comprising a fragment of at least 17, 18, 19, 20 or 21 of any of the sequences as represented in SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49-158, 159, 160, 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275-472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533-575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621-767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813-862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908-1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161-1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730-2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120-2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384-2460, 2461, 2466, 2471, 2476 and 2481. A non-limiting list of fungal orthologs genes or sequences comprising at least a fragment of 15, preferably at least 17 bp of one of the sequences of the invention is given in Tables 6. [0159] In a further embodiment, a dsRNA molecule of the invention comprises any of SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49-158, 159, 160, 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275-472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533-575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621-767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813-862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908-1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161-1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637,1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730-2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120-2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384-2460, 2461, 2466, 2471, 2476 and 2481, though the sequences set forth in SEQ ID NOs: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 49-158, 159, 160, 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 215, 220, 225, 230, 247, 249, 251, 253, 255, 257, 259, 275-472, 473, 478, 483, 488, 493, 498, 503, 513, 515, 517, 519, 521, 533-575, 576, 581, 586, 591, 596, 601, 603, 605, 607, 609, 621-767, 768, 773, 778, 783, 788, 793, 795, 797, 799, 801, 813-862, 863, 868, 873, 878, 883, 888, 890, 892, 894, 896, 908-1040, 1041, 1046, 1051, 1056, 1061, 1071, 1073, 1075, 1077, 1079, 1081, 1083, 1085, 1087, 1089, 1091, 1093, 1095, 1097, 1099, 1101, 1103, 1105, 1107, 1109, 1111, 1113, 1161-1571, 1572, 1577, 1582, 1587, 1592, 1597, 1602, 1607, 1612, 1617, 1622, 1627, 1632, 1637, 1642, 1647, 1652, 1657, 1662, 1667, 1672, 1677, 1682, 1684, 1686, 1688, 1690, 1692, 1694, 1696, 1698, 1700, 1702, 1704, 1730-2039, 2040, 2045, 2050, 2055, 2060, 2065, 2070, 2075, 2080, 2085, 2090, 2095, 2100, 2102, 2104, 2106, 2108, 2120-2338, 2339, 2344, 2349, 2354, 2359, 2364, 2366, 2368, 2370, 2372, 2384-2460, 2461, 2466, 2471, 2476 and 2481 are not limiting. A dsRNA molecule of the invention can comprise any contiguous target gene from a pest species (e.g., about 15 to about 25 or more, or about 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 or more contiguous nucleotides). [0160] By "isolated" nucleic acid molecule(s) is intended a nucleic acid molecule, DNA or RNA, which has been removed from its native environment. For example, recombinant DNA molecules contained in a DNA construct are considered isolated for the purposes of the present invention. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include in vitro RNA transcripts of the DNA molecules of the present invention. Isolated nucleic acid molecules, according to the present invention, further include such molecules produced synthetically. [0161] Nucleic acid molecules of the present invention may be in the form of RNA, such as mRNA, or in the form of DNA, including, for instance, cDNA and genomic DNA obtained by cloning or produced synthetically. The DNA or RNA may be double-stranded or single-stranded. Single-stranded DNA may be the coding strand, also known as the sense strand, or it may be the non-coding strand, also referred to as the antisense strand. [0162] VI. Sequence Analysis [0163] Unless otherwise indicated, all nucleotide sequences determined by sequencing a DNA molecule herein were determined using an automated DNA sequencer (such